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On the distribution of the Wigner time delay in
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Abstract. We consider the scattering by a one-dimensional random potential and derive the
probability distribution of the corresponding Wigner time delay. It is shown that the limiting
distribution is the same for two different models and coincides with the one predicted by
random matrix theory. It is also shown that the corresponding stochastic process is given
by an exponential functional of the potential.

1. Introduction

The concept of time delay introduced long ago by Eisenbud and Wigner has recently received
renewed attention. In a scattering process the time delayτ(k) is related to the time spent in
the interaction region by a wavepacket+ with energy peaked atE = k2. It can be expressed
in terms of the derivative of theS-matrix with respect to the energy. If the system is
described by a finite numberN of channels, theN time delays are the eigenvalues of the
matrix −iS†∂S/∂E. In the context of chaotic scattering a statistical approach based on
random matrix theory allows a determination of the complete distribution of time delays
(for a review see [3]). This problem was first studied in [4] by a supersymmetric approach,
and in [5] by using a statistical analysis. This latter work provided a physical derivation of
the one-channel case forβ = 2 and gave the distribution for other universality classes. It
then recently served as a starting point for [6] where theN -channel distribution is shown to
be given by the Laguerre ensemble of random matrix theory. A slightly different approach
has been developed in the context of quasi one-dimensional mesoscopic systems. Quite
recently a resonant transmission model was proposed to account for the different behaviour
observed in the metallic and insulating regimes [7].

In this paper we consider a one-dimensional model with a random potential whose
support is a finite segment of lengthL. A hard wall condition at the origin reduces the
problem to a scattering problem on the half line. Using standard methods we write down a
set of two coupled stochastic differential equations satisfied by the phase and its derivative
with respect to the energy which is related to the time delay. In the high-energy (or weak
disorder) limit we may take advantage of the fact that the phase is a rapid variable with
a uniform distribution. One finally ends up with a stochastic differential equation for the

§ E-mail address: comtet@ipno.in2p3.fr
‖ E-mail address: texier@ipno.in2p3.fr
¶ Unité de recherche des Universités Paris 11 et Paris 6 associée au CNRS.
+ For a detailed and critical analysis of this concept see [1] and [2].
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time delay which coincides with the one derived in [8, 9] and which can be integrated
explicitly in the case where the potential is white noise. The resulting expression is given
in terms of an exponential functional of a Brownian motion. An analysis of the same model
with a different type of disorder yields the same functional and consequently the same
stationary distribution. Our work therefore brings some support to the conjecture that these
distributions are universal. Another aim of this work is to draw attention to the fact that
the same probability distribution also arises in other physical problems, for instance in the
context of diffusion in a random medium.

2. The model with a white noise potential

Consider the Schrödinger equation on the half linex > 0

− d2

dx2
u(x)+ V (x)u(x) = k2u(x). (1)

We assume that the potential has its support on the interval [0, L] and impose the Dirichlet
boundary condition at the originu(0) = 0. Therefore, forx > L scattering states of
the formu(x) = e−ikx + eikx+iθ(k) represent the superposition of an incoming plane wave
and a reflected plane wave. In this case the reflection coefficientr(k) = eiθ(k) is of unit
modulus since there is only backward scattering. All information on the scattering process
is contained in the phase shiftθ(k). In particular, the Wigner time delay is given by

τ(k) = 1

2k

dθ(k)

dk
. (2)

Our aim is to find the probability distribution ofτ(k) in the case where the potential is a
Gaussian white noise such that

〈V (x)〉 = 0

〈V (x)V (y)〉 = σgδ(x − y). (3)

A widely used method to deal with such problems is the invariant embedding approach
[9, 10]. Here we will use a more straightforward derivation following [11].

The Ricatti variablez(x) = d ln |u(x)|/dx satisfies the first-order nonlinear differential
equation

dz(x)

dx
= V (x)− k2− z(x)2. (4)

In the region whereV (x) vanishes one has

z(x) = −ik + ik e2ikx+iθ(k)

1+ e2ikx+iθ(k)
. (5)

Inverting this relation we may express the reflection coefficient in terms of the Ricatti
variable

e2ikx+iθ(k) = ik + z(x)
ik − z(x). (6)

Although this relation only holds in the regionx > L, we may take it as a definition of the
variableψ(x)

eiψ(x) = ik + z(x)
ik − z(x) (7)
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in the region 06 x 6 L. By using equation (4) one gets the differential equation satisfied
by ψ(x)

dψ(x)

dx
= 2k − 1

k
(1+ cosψ(x))V (x). (8)

Since the Ricatti variable is continuous even if the potential has a discontinuity this implies
that the phase shiftθ(k) is given byψ(L, k)− 2kL. The reflection condition at the origin
gives the boundary conditionψ(0) = π .

Let us introduce the derivative ofψ with respect tok: Z(x, k) ≡ dψ(x, k)/dk in terms
of which the time delay reads

τ(k) = Z(L, k)− 2L

2k
. (9)

The differential equation forZ now reads

dZ(x)

dx
= 2+

[
1

k2
(1+ cosψ(x))+ 1

k
Z(x) sinψ(x)

]
V (x). (10)

From the boundary condition atx = 0 we may setZ(0) = 0.
If V (x) is a Gaussian white noise, equations (8) and (10) are coupled stochastic

differential equations (in the Stratonovich sense) which give the phase and the time delay.
One then may pass from these two stochastic differential equations to a Fokker–Planck

equation for the probability density ofψ andZ. In the high-energy limitk � σ
1/3
g one can

show that the variableψ is a rapid variable uniformly distributed on the interval [0, 2π ].
Moreover, since the rapid variableψ and the slow variableZ de-correlate in this limit, then
one may average over the rapid variable and eventually get the following Fokker–Planck
equation forZ (a more detailed description of the procedure will be given in section 4)

∂P (Z; x)
∂

= ∂

∂Z

[(
σg

4k2
Z − 2

)
P(Z; x)

]
+ σg

4k2

∂

∂Z
Z
∂

∂Z
ZP(Z; x). (11)

Up to an inessential term†, this equation coincides with the one derived in [8] and [9]. It
belongs to a more general class of Fokker–Planck equations that appear in the study of
exponential functionals of Brownian motion with drift.

3. A representation ofτ as an exponential functional of the Brownian motion

Equation (11) describes a special case of a class of stochastic processes which have been
studied extensively in the mathematical [12] as well as in the physical literature. It can be
cast into the equation studied by Schenzleet al in the context of multiplicative stochastic
processes [13]. More recently it was shown to arise in the context of diffusion in a random
medium [14, 15]. The distribution of the flux of particles [16, 17] in a disordered sample of
finite length or the waiting time distribution may be obtained by solving a generalization of
equation (11). From our previous work [17, 18] one may write the general solution of (11)
in the form

P(Z;L) = λ

Z2
e−λ/Z + 2

πZ
e−λ/2Z

∫ ∞
0

ds e−(L/2λ)(1+s
2) s

1+ s2
sinh

πs

2
W1,is/2

(
λ

Z

)
(12)

whereWµ,ν(z) is a Whittaker’s function andλ = 8k2/σg is the localization length at high
energy (k � σ

1/3
g ). In the limit L→∞ the first term gives the limiting distribution which,

† We do not write this term because it is of the same order as terms we neglected in the approximation of the
de-correlation ofψ andZ.
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as announced, coincides with the one-channel distribution obtained in [4]. It is also in
agreement with the result of Jayannavaret al [8] in the high-energy limit.

The general solution given above allows one to study finite size effects. The first
correction to the stationary distribution forZ may be calculated from (12)

P(Z;L) '
L�λ

λ

Z2
e−λ/Z +

√
π

2

(
λ

L

)3/2

e−L/2λW1,0

(
λ

Z

)
e−λ/2Z

Z
. (13)

One can also compute all the moments of the variableZ (or τ ) [17, 18]. Forn greater
than one they all diverge exponentially as a function of the length of the sample.

〈Z(L)〉 = 2L (14)

〈Z(L)n〉 ' (n− 2)!

(2n− 2)!
λn e2n(n−1)L/λ. (15)

It is interesting to remark that the limiting distribution is not of the log-normal form as
could have been expected [9] from a simple resummation of the most divergent part of the
moments.

Another by-product of our earlier work is to provide a representation of the process
to which the random variableτ obeys. The corresponding stochastic differential equation
associated with (11) may be written in the following form

dZ(x)

dx
= 2− σg

4k2
Z(x)+ 1√

2k
Z(x)V (x) (16)

whereV (x) is the white noise (3). By integration one obtainsZ and from (9) the time
delay

τ(k) = 1

k

∫ L

0
dx

(
exp

[ ∫ L

x

dx ′
(
V (x ′)√

2k
− σg

4k2

)]
− 1

)
. (17)

A more satisfactory procedure to derive this formula is to start from the stochastic differential
equations (8) and (10) and constructτ without using a Fokker–Planck equation. This
approach was used by Faris and Tsay [19].

When writing this expression forτ(k) it should be kept in mind that although (17) is not
true for every realization ofV (x), it nevertheless captures all the statistical properties of the
process. In particular, it allows the study of the various limiting cases. Since the potential
V (x) is a white noise, the first term in the exponential, which is a Brownian motion, is
typically of order

√
σgL/k2. The argument of the exponential is roughly a function of the

ratio of the localization lengthλ(k) = 8k2/σg and the size of the systemL. In particular,
if λ� L the time delay is approximatively equal to−L/k which is twice the length of the
sample divided by the speed of the particle. This value for the time delay corresponds to
a reflection at the sample edge. This agrees with the fact that ifλ � L, one expects that
the particle will only enter the sample for a negligible length compared toL. In the other
regimeλ� L expression (17) shows that the time delay is roughly zero. This is consistent
with the fact that in this regime the sample is almost transparent to the particle.

Moreover, if one considers the regime whereλ� L, the stationary distribution forZ(L)
gives a typical valueZtyp ' 2λ corresponding to a typical time delayτtyp ' −(L − λ)/k.
Such a value for the time delay means that the particle enters in the disordered region for
a typical lengthλ.

One may wonder to what extent the representation ofZ as an exponential functional of
the potential depends on the specific form of the noise that we have considered. Although
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we are not able to give a definite answer to this question we nevertheless notice that for
any realization ofV (x) one may integrate equation (10) and get

Z(L) = 2
∫ L

0
dx

(
1+ V (x)

2k2
(1+ cosψ(x))

)
exp

[
1

k

∫ L

x

dx ′ V (x ′) sinψ(x ′)
]

(18)

hence

τ(k) '
k�σ 1/3

g

1

k

∫ L

0
dx

(
exp

[
1

k

∫ L

x

dx ′ V (x ′) sinψ(x ′)
]
− 1

)
. (19)

Up to a constant drift, at high energy, this is essentially of the form given in (17).
The distribution and the asymptotic behaviour of exponential functionals of more general
processes like Levy processes has been obtained in the mathematical literature [20, 21].
There it is shown that a Poisson process gives a limiting distribution whose tail still decays
algebraically.

4. The supersymmetric model

4.1. The model

In this section we consider a different model for which one can also compute exactly the
time delay distribution in the weak disorder limit. We show below thatτ(k) is distributed
with the same law as in the previous case.

We consider the one-dimensional Schrödinger Hamiltonian

H = − d2

dx2
+ φ2(x)+ φ′(x). (20)

As explained at length in [14, 22–24] this model arises in diverse areas of quantum mechanics
ranging from the study of solitons in polymers to the study of classical diffusion in a random
medium. Recently it was used in the context of one-dimensional spin chains [25] and
isospectral periodic potentials [26].

In the following we consider the case whereφ(x) is a Gaussian white noise with the
moments

〈φ(x)〉 = 0

〈φ(x)φ(y)〉 = σδ(x − y). (21)

The supersymmetric Hamiltonian (20) can be rewritten in the factorized form

H = Q†Q (22)

where

Q = − d

dx
+ φ(x) (23)

Q† = d

dx
+ φ(x). (24)

The density of states and the localization length for this model were first obtained in
[27] and then rediscovered independently in [28]. In contrast with the previous model, in
the high-energy limit (k � σ ) the localization length reaches the constant valueλ(k) = 2/σ .

The two other length scales of the problem are the size of the disorder regionL and
the de Broglie wavelengthk−1. In the following we choose to work in a high-energy limit,
i.e. whenk � σ andk � L−1.

As in the previous section, the potential is non-zero on the interval [0, L] and there is
a reflection condition at the origin.
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4.2. Stochastic differential equations for the phase and the time delay

Using the factorization of the supersymmetric Hamiltonian, one may decouple the stationary
Schr̈odinger equation(

− d2

dx2
+ φ2(x)+ φ′(x)

)
u(x) = k2u(x)

into two first-order equations

du(x)

dx
= φ(x)u(x)− kv(x) (25)

dv(x)

dx
= −φ(x)v(x)+ ku(x). (26)

If φ(x) has a discontinuity the two functionsu(x) andv(x) are continuous. This suggests
the introduction of the Ricatti variableζ(x) = v(x)/u(x). It is straightforward to see that
ζ(x) obeys the following first-order nonlinear differential equation

dζ(x)

dx
= k − 2φ(x)ζ(x)+ kζ(x)2. (27)

In the region whereφ(x) is vanishing (x > L), the stationary scattering states can be
expressed as

u(x) = e−ikx + eikx+iθ(k) (28)

whereθ(k) is the phase shift.
This leads to the change of variable

ζ(x) = i
1− e2ikx+iα(x)

1+ e2ikx+iα(x)
(29)

with the phase shiftθ(k) given byα(L, k). Instead ofα(x) it is in fact more convenient
to introduce the variableψ(x) = α(x) + 2kx in terms of which the Ricatti variable is
ζ(x) = tan(ψ(x)/2). Equation (27) then gives

dψ(x)

dx
= 2k − 2φ(x) sinψ(x). (30)

This gives the evolution of the phase and consequently the distribution of the nodes of the
wavefunctionu(x) from which one can get the density of states (compare with equation (2.5)
of [22]).

As in the previous section one may introduceZ(x, k), the derivative ofψ(x, k) with
respect tok, which satisfies

dZ(x)

dx
= 2− 2φ(x)Z(x) cosψ(x) (31)

again the initial conditions for the two variables areψ(0) = π andZ(0) = 0.
Integrating the coupled equations (30) and (31) between 0 andL gives the phase shift

and the time delay.

4.3. The phase distribution

At this stage the formalism developed to compute the phase shift and the time delay is
quite general. We now consider the case whereφ(x) is white noise. Equation (30) is then
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a stochastic differential equation in the Stratonovich sense from which we can write down
a Fokker–Planck equation for the probability density ofψ

∂P (ψ; x)
∂x

= −2k
∂

∂ψ
P (ψ; x)+ 2σ

∂

∂ψ
sinψ

∂

∂ψ
sinψP(ψ; x). (32)

The stationary distribution forψ is given by

Ps(ψ) = N e−(k/σ ) cotψ

sinψ

∫ π

ψ

dψ ′
e(k/σ ) cotψ ′

sinψ ′
(33)

whereN is a normalization constant related to the integrated density of states per unit
lengthN(E) = 2kPs(π) = 2σN (see equation (2.18) of [22] and reference therein). One
can extract from (33) the high-energy expansion of the stationary distribution

Ps(ψ) = N σ
k

{
1+ σ

2k
sin 2ψ + σ

2

k2

(
1

2
sin2 2ψ − sin4ψ

)
+O

(
σ 3

k3

)}
. (34)

This shows that in the high-energy limit the phase is a uniformly distributed variable on
[0, 2π ]. This could have been guessed directly from the differential equation forψ since
in equation (30) one expects that fork � σ the first term will dominate.

4.4. The time delay

Sinceψ is a rapidly varying variable, one expects that the two coupled differential equations
will reduce to only one, after averaging over the rapid variable. For this purpose, the next
natural assumption is the de-correlation of the two variablesψ andZ in the high-energy
limit. We first integrate perturbatively equations (30) and (31) to show that this is indeed
the case

ψ(x) = π + 2kx + 2
∫ x

0
dx ′ φ(x ′) sin 2kx ′ + · · · . (35)

Since the integral is of the order
√
σx, this expansion is valid if

√
σx � 1. The computation

of the autocorrelation function〈ψ(x)ψ(y)〉− 〈ψ(x)〉〈ψ(y)〉 then shows that the variableψ
behaves in this limit as a Brownian motion with a drift

ψ(x) ' π + 2kx +
√

2
∫ x

0
dx ′ φ(x ′). (36)

One can perform the same approximation forZ and compute the correlation function with
the help of the two expansions

〈ψ(x)Z(x)〉 − 〈ψ(x)〉〈Z(x)〉 ' 1

k

(
σ

4k
sin 4kx − σx cos 4kx

)
. (37)

From which we deduce that the correlations betweenψ andZ will vanish in the high-energy
limit.

From the two stochastic differential equations (30) and (31) we may write the Fokker–
Planck equation for the joint probability densityP(ψ,Z; x)
∂P

∂x
= −2k

∂P

∂ψ
− 2

∂P

∂Z
+ 2σ

{
∂

∂ψ
sinψ

∂

∂ψ
sinψP + ∂

∂ψ
sinψ

∂

∂Z
Z cosψP

+ ∂

∂Z
Z cosψ

∂

∂ψ
sinψP + ∂

∂Z
Z cosψ

∂

∂Z
Z cosψP

}
. (38)

Using the fact thatψ is uniformly distributed and de-correlated fromZ in the high-
energy limit, we may average overψ since the joint probability density factorizes as
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P(ψ,Z; x) ' (1/2π)P (Z; x). This leads to the following Fokker–Planck equation for
P(Z; x)

∂P (Z; x)
∂x

= ∂

∂Z
[(σZ − 2)P (Z; x)] + σ ∂

∂Z
Z
∂

∂Z
ZP(Z; x) (39)

which is the same as equation (11) provided one replaces 8k2/σg by 2/σ . In particular, this
implies that the distribution for the variableZ is still given by equation (12) providedλ is
the localization length for the supersymmetric model.

One may thus give a representation for the time delay, valid for both models

τ(k) = 1

k

∫ L

0
dx

(
exp

[
2
∫ L

x

dx ′
(
η(x ′)√
λ
− 1

λ

)
− 1

)
(40)

where η(x) is the white noise of variance one entering in the potential (equal to
(1/
√
σ g)V (x) in the first case and(1/

√
σ)φ(x) in the second) andλ is the localization

length.

5. Conclusion

We have shown in this paper that, for two models of random potential, the time delay
exhibits the same distribution. These statistical properties are in agreement with other
approaches, underlying the universality of such properties.

We have also demonstrated that in both cases the time delay may be expressed as an
exponential functional of the white noise which enters in the potential.

It would be interesting to extend this approach to the multichannel case for which the
stationary distribution has been recently obtained [6]. Another point that deserves attention
is the fact that the resulting distribution for the time delay is exactly of the same form as
the waiting time distribution that occurs in the context of classical diffusion in a random
potential [14]. The supersymmetric model may help to explore this relation.
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